Artificial Intelligence–Powered Prediction of ALK Gene Rearrangement in Patients With Non–Small-Cell Lung Cancer

Author:

Terada Yukihiro1ORCID,Takahashi Toshihiro1,Hayakawa Takamitsu1,Ono Akira2ORCID,Kawata Takuya3,Isaka Mitsuhiro1,Muramatsu Koji3,Tone Kiyoshi3,Kodama Hiroaki2,Imai Toru4,Notsu Akifumi4,Mori Keita4ORCID,Ohde Yasuhisa1ORCID,Nakajima Takashi3,Sugino Takashi3ORCID,Takahashi Toshiaki2

Affiliation:

1. Division of Thoracic Surgery, Shizuoka Cancer Center, Shizuoka, Japan

2. Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan

3. Division of Pathology, Shizuoka Cancer Center, Shizuoka, Japan

4. Department of Biostatistics, Clinical Research Center, Shizuoka Cancer Center, Shizuoka, Japan

Abstract

PURPOSE Several studies reported the possibility of predicting genetic abnormalities in non–small-cell lung cancer by deep learning (DL). However, there are no data of predicting ALK gene rearrangement ( ALKr) using DL. We evaluated the ALKr predictability using the DL platform. MATERIALS AND METHODS We selected 66 ALKr-positive cases and 142 ALKr-negative cases, which were diagnosed by ALKr immunohistochemical staining in our institution from January 2009 to March 2019. We generated virtual slide of 300 slides (150 ALKr-positive slides and 150 ALKr-negative slides) using NanoZoomer. HALO-AI was used to analyze the whole-slide imaging data, and the DenseNet network was used to build the learning model. Of the 300 slides, we randomly assigned 172 slides to the training cohort and 128 slides to the test cohort to ensure no duplication of cases. In four resolutions (16.0/4.0/1.0/0.25 μm/pix), ALKr prediction models were built in the training cohort and ALKr prediction performance was evaluated in the test cohort. We evaluated the diagnostic probability of ALKr by receiver operating characteristic analysis in each ALKr probability threshold (50%, 60%, 70%, 80%, 90%, and 95%). We expected the area under the curve to be 0.64-0.85 in the model of a previous study. Furthermore, in the test cohort data, an expert pathologist also evaluated the presence of ALKr by hematoxylin and eosin staining on whole-slide imaging. RESULTS The maximum area under the curve was 0.73 (50% threshold: 95% CI, 0.65 to 0.82) in the resolution of 1.0 μm/pix. In this resolution, with an ALKr probability of 50% threshold, the sensitivity and specificity were 73% and 73%, respectively. The expert pathologist's sensitivity and specificity in the same test cohort were 13% and 94%. CONCLUSION The ALKr prediction by DL was feasible. Further study should be addressed to improve accuracy of ALKr prediction.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3