Derivation of a Unique, Algorithm-Based Approach to Cancer Patient Navigator Workload Management

Author:

Zhu Xiyitao1ORCID,Zhang Peng1,Kang Hyojung1ORCID,Marla Lavanya1ORCID,Robles Granda Marlene Isabel2,Ebert-Allen Rebecca A.2,Stewart de Ramirez Sarah23,Oderwald Tenille2,McGee Mackenzie2,Handler Jonathan A.24ORCID

Affiliation:

1. University of Illinois at Urbana-Champaign, Champaign, IL

2. OSF HealthCare System, Peoria, IL

3. University of Illinois College of Medicine at Peoria, Peoria, IL

4. Department of Emergency Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL

Abstract

PURPOSE Cancer patient navigators (CPNs) can decrease the time from diagnosis to treatment, but workloads vary widely, which may lead to burnout and less optimal navigation. Current practice for patient distribution among CPNs at our institution approximates random distribution. A literature search did not uncover previous reports of an automated algorithm to distribute patients to CPNs. We sought to develop an automated algorithm to fairly distribute new patients among CPNs specializing in the same cancer type(s) and assess its performance through simulation on a retrospective data set. METHODS Using a 3-year data set, a proxy for CPN work was identified and multiple models were developed to predict the upcoming week's workload for each patient. An XGBoost-based predictor was retained on the basis of its superior performance. A distribution model was developed to fairly distribute new patients among CPNs within a specialty on the basis of predicted work needed. The predicted work included the week's predicted workload from a CPN's existing patients plus that of newly distributed patients to the CPN. Resulting workload unfairness was compared between predictor-informed and random distribution. RESULTS Predictor-informed distribution significantly outperformed random distribution for equalizing weekly workloads across CPNs within a specialty. CONCLUSION This derivation work demonstrates the feasibility of an automated model to distribute new patients more fairly than random assignment (with unfairness assessed using a workload proxy). Improved workload management may help reduce CPN burnout and improve navigation assistance for patients with cancer.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3