Novel Generative Recurrent Neural Network Framework to Produce Accurate, Applicable, and Deidentified Synthetic Medical Data for Patients With Metastatic Cancer

Author:

Ganguli Reetam12ORCID,Lad Rishik3,Lin Alice2,Yu Xiaotian4

Affiliation:

1. Brown University, Providence, RI

2. Dartmouth College, Hanover, NH

3. Warren Alpert Medical School of Brown University, Providence, RI

4. University of Virginia, Charlottesville, VA

Abstract

PURPOSE Sensitive patient data cannot be easily shared/analyzed, severely limiting the innovative progress of research, specifically for marginalized/under-represented populations. Existing methods of deidentification are subject to data breaches. The objective of this study was to develop a neural network capable of generating a synthetic version of data for patients with novel postoperative metastatic cancer. METHODS We analyzed a metastatic cancer patient cohort of 167,474 patients obtained from the National Surgical Quality Improvement Program. Twenty-seven clinical features were analyzed. We created a volume-matched synthetic cohort of 167,474 patients and a reduced-size synthetic cohort of 5,000 patients. The volume-matched and reduced-size synthetic cohorts were compared against the ground truth data to analyze differences in principal component distribution, underlying statistical properties/associations, intervariable correlations, and machine learning classifier performance when developed on the synthetic data. RESULTS Among 167,474 patients with metastatic cancer in the original data, 50,669 (30.3%) died within 30 days of their index surgery. Our model was able to accurately capture underlying statistical properties, principal components, and intervariable correlations within the ground truth data, yielding an accuracy of 93.2% with a loss of 0.21%, and develop synthetic data capable of training accurate machine learning classifiers. The reduced-size synthetic data accurately replicated all categorical variables and every continuous variable with statistically similar records ( P > .05), with the sole exception of preoperative albumin ( P < .05). The volume-matched synthetic data frame was able to accurately replicate all categorical variables ( P > .05). CONCLUSION This described methodology can be applied to any structured medical data from any setting, significantly expedite scientific analysis/innovation, and be used to develop improved predictive classifiers with boosted tree-based algorithms, serving as the potential new gold standard of medical data sharing and data augmentation.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3