Genomics Identifies Medulloblastoma Subgroups That Are Enriched for Specific Genetic Alterations

Author:

Thompson Margaret C.1,Fuller Christine1,Hogg Twala L.1,Dalton James1,Finkelstein David1,Lau Ching C.1,Chintagumpala Murali1,Adesina Adekunle1,Ashley David M.1,Kellie Stewart J.1,Taylor Michael D.1,Curran Tom1,Gajjar Amar1,Gilbertson Richard J.1

Affiliation:

1. From the St Jude Children's Research Hospital, Memphis, TN; Texas Children's Hospital, Houston, TX; Royal Children's Hospital, Melbourne; The Children's Hospital at Westmead and University of Sydney, Sydney, Australia; and Hospital for Sick Children, Toronto, Ontario, Canada

Abstract

Purpose Traditional genetic approaches to identify gene mutations in cancer are expensive and laborious. Nonetheless, if we are to avoid rejecting effective molecular targeted therapies, we must test these drugs in patients whose tumors harbor mutations in the drug target. We hypothesized that gene expression profiling might be a more rapid and cost-effective method of identifying tumors that contain specific genetic abnormalities. Materials and Methods Gene expression profiles of 46 samples of medulloblastoma were generated using the U133av2 Affymetrix oligonucleotide array and validated using real-time reverse transcriptase polymerase chain reaction (RT-PCR) and immunohistochemistry. Genetic abnormalities were confirmed using fluorescence in situ hybridization (FISH) and direct sequencing. Results Unsupervised analysis of gene expression profiles partitioned medulloblastomas into five distinct subgroups (subgroups A to E). Gene expression signatures that distinguished these subgroups predicted the presence of key molecular alterations that we subsequently confirmed by gene sequence analysis and FISH. Subgroup-specific abnormalities included mutations in the Wingless (WNT) pathway and deletion of chromosome 6 (subgroup B) and mutations in the Sonic Hedgehog (SHH) pathway (subgroup D). Real-time RT-PCR analysis of gene expression profiles was then used to predict accurately the presence of mutations in the WNT and SHH pathways in a separate group of 31 medulloblastomas. Conclusion Genome-wide expression profiles can partition large tumor cohorts into subgroups that are enriched for specific genetic alterations. This approach may assist ultimately in the selection of patients for future clinical trials of molecular targeted therapies.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3