Characterizing the Increase in Artificial Intelligence Content Detection in Oncology Scientific Abstracts From 2021 to 2023

Author:

Howard Frederick M.1ORCID,Li Anran1,Riffon Mark F.2,Garrett-Mayer Elizabeth2ORCID,Pearson Alexander T.1ORCID

Affiliation:

1. Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL

2. Center for Research and Analytics, American Society of Clinical Oncology, Alexandria, VA

Abstract

PURPOSE Artificial intelligence (AI) models can generate scientific abstracts that are difficult to distinguish from the work of human authors. The use of AI in scientific writing and performance of AI detection tools are poorly characterized. METHODS We extracted text from published scientific abstracts from the ASCO 2021-2023 Annual Meetings. Likelihood of AI content was evaluated by three detectors: GPTZero, Originality.ai, and Sapling. Optimal thresholds for AI content detection were selected using 100 abstracts from before 2020 as negative controls, and 100 produced by OpenAI's GPT-3 and GPT-4 models as positive controls. Logistic regression was used to evaluate the association of predicted AI content with submission year and abstract characteristics, and adjusted odds ratios (aORs) were computed. RESULTS Fifteen thousand five hundred and fifty-three abstracts met inclusion criteria. Across detectors, abstracts submitted in 2023 were significantly more likely to contain AI content than those in 2021 (aOR range from 1.79 with Originality to 2.37 with Sapling). Online-only publication and lack of clinical trial number were consistently associated with AI content. With optimal thresholds, 99.5%, 96%, and 97% of GPT-3/4–generated abstracts were identified by GPTZero, Originality, and Sapling respectively, and no sampled abstracts from before 2020 were classified as AI generated by the GPTZero and Originality detectors. Correlation between detectors was low to moderate, with Spearman correlation coefficient ranging from 0.14 for Originality and Sapling to 0.47 for Sapling and GPTZero. CONCLUSION There is an increasing signal of AI content in ASCO abstracts, coinciding with the growing popularity of generative AI models.

Publisher

American Society of Clinical Oncology (ASCO)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3