Reimagining T Staging Through Artificial Intelligence and Machine Learning Image Processing Approaches in Digital Pathology

Author:

Bera Kaustav12ORCID,Katz Ian3,Madabhushi Anant14ORCID

Affiliation:

1. Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH

2. Maimonides Medical Center, Department of Internal Medicine, Brooklyn, NY

3. Southern Sun Pathology, Sydney, Australia, and University of Queensland, Brisbane, Australia

4. Louis Stokes Veterans Affairs Medical Center, Cleveland, OH

Abstract

Tumor stage and grade, visually assessed by pathologists from evaluation of pathology images in conjunction with radiographic imaging techniques, have been linked to outcome, progression, and survival for a number of cancers. The gold standard of staging in oncology has been the TNM (tumor-node-metastasis) staging system. Though histopathological grading has shown prognostic significance, it is subjective and limited by interobserver variability even among experienced surgical pathologists. Recently, artificial intelligence (AI) approaches have been applied to pathology images toward diagnostic-, prognostic-, and treatment prediction–related tasks in cancer. AI approaches have the potential to overcome the limitations of conventional TNM staging and tumor grading approaches, providing a direct prognostic prediction of disease outcome independent of tumor stage and grade. Broadly speaking, these AI approaches involve extracting patterns from images that are then compared against previously defined disease signatures. These patterns are typically categorized as either (1) handcrafted, which involve domain-inspired attributes, such as nuclear shape, or (2) deep learning (DL)–based representations, which tend to be more abstract. DL approaches have particularly gained considerable popularity because of the minimal domain knowledge needed for training, mostly only requiring annotated examples corresponding to the categories of interest. In this article, we discuss AI approaches for digital pathology, especially as they relate to disease prognosis, prediction of genomic and molecular alterations in the tumor, and prediction of treatment response in oncology. We also discuss some of the potential challenges with validation, interpretability, and reimbursement that must be addressed before widespread clinical deployment. The article concludes with a brief discussion of potential future opportunities in the field of AI for digital pathology and oncology.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3