Affiliation:
1. Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH
2. Maimonides Medical Center, Department of Internal Medicine, Brooklyn, NY
3. Southern Sun Pathology, Sydney, Australia, and University of Queensland, Brisbane, Australia
4. Louis Stokes Veterans Affairs Medical Center, Cleveland, OH
Abstract
Tumor stage and grade, visually assessed by pathologists from evaluation of pathology images in conjunction with radiographic imaging techniques, have been linked to outcome, progression, and survival for a number of cancers. The gold standard of staging in oncology has been the TNM (tumor-node-metastasis) staging system. Though histopathological grading has shown prognostic significance, it is subjective and limited by interobserver variability even among experienced surgical pathologists. Recently, artificial intelligence (AI) approaches have been applied to pathology images toward diagnostic-, prognostic-, and treatment prediction–related tasks in cancer. AI approaches have the potential to overcome the limitations of conventional TNM staging and tumor grading approaches, providing a direct prognostic prediction of disease outcome independent of tumor stage and grade. Broadly speaking, these AI approaches involve extracting patterns from images that are then compared against previously defined disease signatures. These patterns are typically categorized as either (1) handcrafted, which involve domain-inspired attributes, such as nuclear shape, or (2) deep learning (DL)–based representations, which tend to be more abstract. DL approaches have particularly gained considerable popularity because of the minimal domain knowledge needed for training, mostly only requiring annotated examples corresponding to the categories of interest. In this article, we discuss AI approaches for digital pathology, especially as they relate to disease prognosis, prediction of genomic and molecular alterations in the tumor, and prediction of treatment response in oncology. We also discuss some of the potential challenges with validation, interpretability, and reimbursement that must be addressed before widespread clinical deployment. The article concludes with a brief discussion of potential future opportunities in the field of AI for digital pathology and oncology.
Publisher
American Society of Clinical Oncology (ASCO)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献