Bayesian Framework to Augment Tumor Board Decision Making

Author:

Pasetto Stefano1,Gatenby Robert A.12,Enderling Heiko13ORCID

Affiliation:

1. Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer & Research Institute, Tampa, FL

2. Department of Radiology, H. Lee Moffitt Cancer & Research Institute, Tampa, FL

3. Department of Radiation Oncology, H. Lee Moffitt Cancer & Research Institute, Tampa, FL

Abstract

PURPOSE Ideally, specific treatment for a cancer patient is decided by a multidisciplinary tumor board, integrating prior clinical experience, published data, and patient-specific factors to develop a consensus on an optimal therapeutic strategy. However, many oncologists lack access to a tumor board, and many patients have incomplete data descriptions so that tumor boards must act on imprecise criteria. We propose these limitations to be addressed through a flexible but rigorous mathematical tool that can define the probability of success of given therapies and be made readily available to the oncology community. METHODS We present a Bayesian approach to tumor forecasting using a multimodel framework to predict patient-specific response to different targeted therapies even when historical data are incomplete. RESULTS We demonstrate that the Bayesian decision theory's integrative power permits the simultaneous assessment of a range of therapeutic options. CONCLUSION This methodology proposed, built upon a robust and well-established mathematical framework, can play a crucial role in supporting patient-specific clinical decisions by individual oncologists and multispecialty tumor boards.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3