Affiliation:
1. Emory University School of Medicine, Atlanta, GA
2. University of Arkansas for Medical Sciences, Little Rock, AR
3. Stony Brook University, Stony Brook, NY
Abstract
PURPOSE Precision medicine requires an understanding of individual variability, which can only be acquired from large data collections such as those supported by the Cancer Imaging Archive (TCIA). We have undertaken a program to extend the types of data TCIA can support. This, in turn, will enable TCIA to play a key role in precision medicine research by collecting and disseminating high-quality, state-of-the-art, quantitative imaging data that meet the evolving needs of the cancer research community METHODS A modular technology platform is presented that would allow existing data resources, such as TCIA, to evolve into a comprehensive data resource that meets the needs of users engaged in translational research for imaging-based precision medicine. This Platform for Imaging in Precision Medicine (PRISM) helps streamline the deployment and improve TCIA’s efficiency and sustainability. More importantly, its inherent modular architecture facilitates a piecemeal adoption by other data repositories. RESULTS PRISM includes services for managing radiology and pathology images and features and associated clinical data. A semantic layer is being built to help users explore diverse collections and pool data sets to create specialized cohorts. PRISM includes tools for image curation and de-identification. It includes image visualization and feature exploration tools. The entire platform is distributed as a series of containerized microservices with representational state transfer interfaces. CONCLUSION PRISM is helping modernize, scale, and sustain the technology stack that powers TCIA. Repositories can take advantage of individual PRISM services such as de-identification and quality control. PRISM is helping scale image informatics for cancer research at a time when the size, complexity, and demands to integrate image data with other precision medicine data-intensive commons are mounting.
Publisher
American Society of Clinical Oncology (ASCO)
Reference67 articles.
1. A New Initiative on Precision Medicine
2. National Research Council: Toward precision medicine: Building a knowledge network for biomedical research and a new taxonomy of disease. Washington, DC, National Academies Press, 2011
3. Artificial intelligence in radiology
4. Quantitative Imaging in Cancer Clinical Trials
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献