Artificial Intelligence Clinical Evidence Engine for Automatic Identification, Prioritization, and Extraction of Relevant Clinical Oncology Research

Author:

Saiz Fernando Suarez1,Sanders Corey1,Stevens Rick1,Nielsen Robert1,Britt Michael1,Yuravlivker Leemor1,Preininger Anita M.1,Jackson Gretchen P.1234

Affiliation:

1. IBM Watson Health, IBM Corporation, Cambridge, MA

2. Department of Surgery, Vanderbilt University Medical Center, Nashville, TN

3. Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN

4. Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN

Abstract

PURPOSE We developed a system to automate analysis of the clinical oncology scientific literature from bibliographic databases and match articles to specific patient cohorts to answer specific questions regarding the efficacy of a treatment. The approach attempts to replicate a clinician’s mental processes when reviewing published literature in the context of a patient case. We describe the system and evaluate its performance. METHODS We developed separate ground truth data sets for each of the tasks described in the paper. The first ground truth was used to measure the natural language processing (NLP) accuracy from approximately 1,300 papers covering approximately 3,100 statements and approximately 25 concepts; performance was evaluated using a standard F1 score. The ground truth for the expert classifier model was generated by dividing papers cited in clinical guidelines into a training set and a test set in an 80:20 ratio, and performance was evaluated for accuracy, sensitivity, and specificity. RESULTS The NLP models were able to identify individual attributes with a 0.7-0.9 F1 score, depending on the attribute of interest. The expert classifier machine learning model was able to classify the individual records with a 0.93 accuracy (95% CI, 0.9 to 0.96, P < .0001), and sensitivity and specificity of 0.95 and 0.91, respectively. Using a decision boundary of 0.5 for the positive (expert) label, the classifier demonstrated an F1 score of 0.92. CONCLUSION The system identified and extracted evidence from the oncology literature with a high degree of accuracy, sensitivity, and specificity. This tool enables timely access to the most relevant biomedical literature, providing critical support to evidence-based practice in areas of rapidly evolving science.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3