Improving Early Identification of Significant Weight Loss Using Clinical Decision Support System in Lung Cancer Radiation Therapy

Author:

Han Peijin1ORCID,Lee Sang Ho1ORCID,Noro Kazumasa2,Haller John W.3ORCID,Nakatsugawa Minoru2ORCID,Sugiyama Shinya2ORCID,Bowers Michael1,Lakshminarayanan Pranav1ORCID,Hoff Jeffrey1,Friedes Cole1ORCID,Hu Chen4ORCID,McNutt Todd R.1,Voong K. Ranh1ORCID,Lee Junghoon1ORCID,Hales Russell K.1ORCID

Affiliation:

1. Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD

2. Canon Medical Systems Corp, Otawara, Japan

3. Canon Medical Research USA, Inc, Vernon Hills, IL

4. Department of Oncology Biostatistics and Bioinformatics, Johns Hopkins University, Baltimore, MD

Abstract

PURPOSE Early identification of patients who may be at high risk of significant weight loss (SWL) is important for timely clinical intervention in lung cancer radiotherapy (RT). A clinical decision support system (CDSS) for SWL prediction was implemented within the routine clinical workflow and assessed on a prospective cohort of patients. MATERIALS AND METHODS CDSS incorporated a machine learning prediction model on the basis of radiomics and dosiomics image features and was connected to a web-based dashboard for streamlined patient enrollment, feature extraction, SWL prediction, and physicians' evaluation processes. Patients with lung cancer (N = 37) treated with definitive RT without prior RT were prospectively enrolled in the study. Radiomics and dosiomics features were extracted from CT and 3D dose volume, and SWL probability (≥ 0.5 considered as SWL) was predicted. Two physicians predicted whether the patient would have SWL before and after reviewing the CDSS prediction. The physician's prediction performance without and with CDSS and prediction changes before and after using CDSS were compared. RESULTS CDSS showed significantly better prediction accuracy than physicians (0.73 v 0.54) with higher specificity (0.81 v 0.50) but with lower sensitivity (0.55 v 0.64). Physicians changed their original prediction after reviewing CDSS prediction for four cases (three correctly and one incorrectly), for all of which CDSS prediction was correct. Physicians' prediction was improved with CDSS in accuracy (0.54-0.59), sensitivity (0.64-0.73), specificity (0.50-0.54), positive predictive value (0.35-0.40), and negative predictive value (0.76-0.82). CONCLUSION Machine learning–based CDSS showed the potential to improve SWL prediction in lung cancer RT. More investigation on a larger patient cohort is needed to properly interpret CDSS prediction performance and its benefit in clinical decision making.

Publisher

American Society of Clinical Oncology (ASCO)

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3