Incorporating structural topic modeling into short text analysis

Author:

Wang Po-Ya Angela1,Hsieh Shu-Kai1ORCID

Affiliation:

1. National Taiwan University

Abstract

Abstract The past few decades have seen the rapid development of topic modeling. So far, research has been more concerned with determining the ideal number of topics or meaningful topic clustering words than with applying topic modeling techniques to evaluate linguistic theories. This study proposes the Structural Topic Model (STM)-led framework to facilitate the interpretation of topic modeling results and standardize text analysis. STM encompasses various model training mechanisms, thereby requiring systematic designs to properly combine language studies. “Structural” in STM refers to the inclusion of metadata structure. Unlike the corpus-based keyness approach, STM can capture contextual cues and meta-information for the interpretation of topical results. Besides, STM can make cross-corpora comparisons via topical contrast, a challenging task for corpus-driven related models such as the Biterm Topic Model (BTM). Stylistic variations in song lyrics are taken as an illustration to show how to use the suggested framework to delve into the linguistic theory proposed by Pennebaker (2013). The topical model and iterable model in the proposed paradigm can clarify how pronouns affect style distinction. We believe the proposed STM-led framework can shed light on text analysis by conducting a reproducible cross-corpora comparison on short texts.

Publisher

John Benjamins Publishing Company

Subject

Linguistics and Language,Language and Linguistics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3