Full-duplex acoustic interaction system for cognitive experiments with cetaceans

Author:

Rychen Jörg1,Semoroz Julie2,Eckerle Alexander3,Hahnloser Richard HR1,Kleinberger Rébecca45ORCID

Affiliation:

1. University of Zurich and ETH Zurich

2. Association Motonomy

3. Ludwig-Maximilians-University of Munich

4. MIT Media Lab

5. Northeastern University

Abstract

Abstract Cetaceans show high cognitive abilities and strong social bonds. Their primary sensory modality to communicate and sense the environment is acoustics. Research on their echolocation and social vocalizations typically uses visual and tactile systems adapted from research on primates or birds. Such research would benefit from a purely acoustic communication system to better match their natural capabilities. We argue that a full duplex system, in which signals can flow in both directions simultaneously is essential for communication research. We designed and implemented a full duplex system to acoustically interact with cetaceans in the wild, featuring digital echo-suppression. We pilot tested the system in Arctic Norway and achieved an echo suppression of 18 dB. We discuss the limiting factors and how to improve the echo suppression further. The system enabled vocal interaction with the underwater acoustic scene by allowing experimenters to listen while producing sounds. We describe our motivations, then present our pilot deployment and give examples of initial explorative attempts to vocally interact with wild orcas and humpback whales.

Publisher

John Benjamins Publishing Company

Subject

Human-Computer Interaction,Linguistics and Language,Animal Science and Zoology,Language and Linguistics,Communication

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Call of the Wild Web: Comparing Parrot Engagement in Live vs. Pre-Recorded Video Calls;Proceedings of the CHI Conference on Human Factors in Computing Systems;2024-05-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3