German nominal number interpretation in an impaired mental lexicon

Author:

Plag Ingo1ORCID,Heitmeier Maria2ORCID,Domahs Frank3

Affiliation:

1. Heinrich-Heine-Universität Düsseldorf

2. Universität Tübingen

3. Universität Erfurt

Abstract

Abstract There is an ongoing debate on how speakers and listeners process and interpret information in a morphological system that is very complex and not very transparent. A well-known test case is the German nominal number system. In this paper we employ discriminative learning (e.g., Ramscar & Yarlett, 2007; Baayen et al., 2011, 2019) to test whether discriminative learning networks can be used to better understand the processing of German number. We analyse behavioral data obtained from a patient with primary progressive aphasia (Domahs et al., 2017), and the unimpaired system. We test a model that implements the traditional cues borrowed from the schema approach (Köpcke, 1988, 1993; Köpcke et al., 2021), and compare it to a model that uses segmental and phonotactic information only. Our results for the unimpaired system demonstrate that a model based on only biphones as cues is better able to predict the number of a given word-form than a model using structural phonological cues. We also test whether a discriminative learning model can predict the number decisions by the aphasic patient. The results demonstrate that a biphone-based discriminative model trained on the patient’s responses is superior to a structure-based model in approximating the patient’s behavior.

Publisher

John Benjamins Publishing Company

Reference72 articles.

1. Morphology-phonology interaction;Arndt-Lappe,2021

2. Stratification effects without morphological strata, syllable counting effects without counts: Modelling English stress assignment with Naive Discriminative Learning;Arndt-Lappe;Morphology,2022

3. An amorphous model for morphological processing in visual comprehension based on naive discriminative learning.

4. Celex2;Baayen;Linguistic Data Consortium, Philadelphia,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3