Chapter 11. Word alignment in the Russian-Chinese parallel corpus

Author:

Politova Anastasia1ORCID,Bonetskaya Olga2,Dolgov Dmitry3,Frolova Maria3ORCID,Pyrkova Anna4

Affiliation:

1. Soochow University, School of Foreign Languages

2. HSE University, Computer Science Faculty

3. Independent researcher

4. HSE University, School of Asian Studies

Abstract

The Russian-Chinese parallel corpus (RuZhCorp) was created in 2016 by sinologists and computational linguists. So far, it has accumulated 1 074 texts and over 4.6 million words that are aligned on a sentence level. To produce word alignment for the entire corpus, we used deep neural networks trained both on the whole RuZhCorp and on a manually aligned at a word level gold dataset. Using the principles presented in previous publications, we compiled the first word-to-word alignment guideline for the Russian-Chinese language pair, which makes the manual alignment process less ambiguous and more consistent. The joint fine-tuning of the LaBSE deep learning model on RuZhCorp and the gold dataset achieved the best AER of 18.9%.

Publisher

John Benjamins Publishing Company

Reference32 articles.

1. Biasing Attention-Based Recurrent Neural Networks Using External Alignment Information

2. A statistical approach to machine translation;Brown;Computational Linguistics,1990

3. The mathematics of statistical machine translation: Parameter estimation;Brown;Computational Linguistics,1993

4. Automatic construction of parallel English-Chinese corpus for cross-language information retrieval

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3