Association measures for collocation extraction

Author:

Su Qi1ORCID,Gu Chen1ORCID,Liu Pengyuan23ORCID

Affiliation:

1. Peking University

2. Beijing Language and Culture University

3. NLRMR for Print Media

Abstract

AbstractIn this study, we propose a new evaluation scheme to assess the strengths and limitations of collocation extraction measures and explore type-sensitive methods for extracting collocations. We introduced the pooling strategy widely used in Information Retrieval and automated the evaluation process using online dictionaries. Sixteen well-known metrics are evaluated based on their effectiveness and then distributional and linguistic compared. The results show that Group A methods (e.g. z-score, Dice, PMI) are more effective in extracting low-frequency collocations with relatively small extraction scales. In contrast, Group B methods (e.g. t-test, LMI, LLR) perform better at finding high-frequency collocations, most of which outperform Group A methods as the extraction scale increases. Moreover, Group A prefers NN collocations, while Group B identifies collocations with a wide range of syntactic structures. This study provides suggestions for studies to identify hybrid extraction methods as well as for language educators and dictionary compilers.

Publisher

John Benjamins Publishing Company

Subject

Linguistics and Language,Language and Linguistics

Reference56 articles.

1. Developing the Academic Collocation List (ACL) – A corpus-driven and expert-judged approach

2. Hybrid method for automatic extraction of multiword expressions

3. Towards a Firthian notion of collocation;Bartsch;Vernetzungsstrategien Zugriffsstrukturen und automatisch ermittelte Angaben in Internetwörterbüchern,2014

4. The computation of collocations and their relevance in lexical studies;Berry-Rogghe,1973

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3