Machine learning for learner English

Author:

Ballier Nicolas12,Canu Stéphane34,Petitjean Caroline34,Gasso Gilles34,Balhana Carlos5,Alexopoulou Theodora5,Gaillat Thomas6

Affiliation:

1. Université de Paris

2. CLILLAC-ARP

3. INSA Rouen

4. LITIS

5. University of Cambridge

6. Université Universités de Rennes 1&2, LIDILE

Abstract

Abstract This paper discusses machine learning techniques for the prediction of Common European Framework of Reference (CEFR) levels in a learner corpus. We summarise the CAp 2018 Machine Learning (ML) competition, a classification task of the six CEFR levels, which map linguistic competence in a foreign language onto six reference levels. The goal of this competition was to produce a machine learning system to predict learners’ competence levels from written productions comprising between 20 and 300 words and a set of characteristics computed for each text extracted from the French component of the EFCAMDAT data (Geertzen et al., 2013). Together with the description of the competition, we provide an analysis of the results and methods proposed by the participants and discuss the benefits of this kind of competition for the learner corpus research (LCR) community. The main findings address the methods used and lexical bias introduced by the task.

Publisher

John Benjamins Publishing Company

Reference65 articles.

1. Semisupervised Learning for Computational Linguistics

2. Task Effects on Linguistic Complexity and Accuracy: A Large-Scale Learner Corpus Analysis Employing Natural Language Processing Techniques

3. Classifying intermediate learner English: a data-driven approach to learner corpora;Alexopoulou,2013

4. Automated essay scoring with e-rater® v.2;Attali;The Journal of Technology, Learning and Assessment,2006

5. Lexical bias in essay level prediction;Balikas;ArXiv e-prints,2018

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automated Scoring of English Essays in CEFR Levels using LSTM and DistilBERT Embeddings;2023 10th International Conference on Advanced Informatics: Concept, Theory and Application (ICAICTA);2023-10-07

2. Robustness Analysis uncovers Language Proficiency Bias in Emotion Recognition Systems;2023 11th International Conference on Affective Computing and Intelligent Interaction (ACII);2023-09-10

3. Visualizing Linguistic Complexity and Proficiency in Learner English Writings;CALICO Journal;2023-05-25

4. 7 Modals as a predictive factor for L2 proficiency level;Models of Modals;2023-04-12

5. Robustness Analysis uncovers Language Proficiency Bias in Emotion Recognition Systems;INT CONF AFFECT;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3