Interaction history as a source of compositionality in emergent communication

Author:

Korbak Tomasz12,Zubek Julian2,Kuciński Łukasz3,Miłoś Piotr34,Rączaszek-Leonardi Joanna2

Affiliation:

1. University of Sussex

2. University of Warsaw

3. Polish Academy of Sciences

4. University of Oxford

Abstract

Abstract In this paper, we explore interaction history as a particular source of pressure for achieving emergent compositional communication in multi-agent systems. We propose a training regime implementing template transfer, the idea of carrying over learned biases across contexts. In the presented method, a sender-receiver dyad is first trained with a disentangled pair of objectives, and then the receiver is transferred to train a new sender with a standard objective. Unlike other methods (e.g. the obverter algorithm), the template transfer approach does not require imposing inductive biases on the architecture of the agents. We experimentally show the emergence of compositional communication using topographical similarity, zero-shot generalization and context-independence as evaluation metrics. The presented approach is connected to an important line of work in semiotics and developmental psycholinguistics: it supports a conjecture that compositional communication is scaffolded on simpler communication protocols.

Publisher

John Benjamins Publishing Company

Subject

Human-Computer Interaction,Linguistics and Language,Animal Science and Zoology,Language and Linguistics,Communication

Reference58 articles.

1. Hierarchical Models for the Evolution of Compositional Language;Barrett;Institute for Mathematical Behavioral Sciences Technical Report MBS 18-03,2018

2. Self-assembling Games

3. Self-Assembling Networks

4. Computational simulations of the emergence of grammar;Batali;Approach to the Evolution of Language,1998

5. Emergence of Communication in an Interactive World with Consistent Speakers;Bogin;arXiv:1809.00549 [cs],2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3