“You look like my 14-year-old daughter”

Author:

Wang Wanwen1ORCID,Ngai Jonathan2ORCID

Affiliation:

1. The Hong Kong Polytechnic University

2. Hong Kong Metropolitan University

Abstract

Abstract The main purpose of this corpus-based study is to examine the different types of sexist language women are subjected to in their daily interactions with men, together with their hidden ideologies. To this end, we analysed a total of 1,118 English tweets posted on the hashtag #everydaysexism on Twitter over a year. Results indicate that women experience both overt and indirect verbal aggression in different domains of life, expressed through a range of sexist linguistic markers, and that such aggression often reflect the users’ beliefs and values about men and women. By using a category-based model to examine a feminist narrative hashtag where women’s experiences of sexism are shared, our study offers a robust and principled approach to conducting a corpus-based, cross-domain discourse analysis of sexism in daily communication.

Publisher

John Benjamins Publishing Company

Subject

Surfaces and Interfaces,Communication,Language and Linguistics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3