A multi-dimensional comparison of the effectiveness and efficiency of association measures in collocation extraction

Author:

Deng Yaochen1ORCID,Liu Dilin2ORCID

Affiliation:

1. Dalian University of Foreign Languages

2. The University of Alabama

Abstract

Abstract Because of the ubiquity and importance of collocations in language use/learning, how to effectively and efficiently identify collocations has been a topic of interest. Although some studies have evaluated many of the existing association measures (AMs) used in the automatic identification of collocations, the results so far have been inconsistent and unclear due to various limitations of the existing studies. Hence, this study makes a multi-dimensional evaluation of the effectiveness and efficiency of seven major AMs in the identification of three types of collocations across five genres and seven corpora of different sizes. The results indicate that while a few AMs, such as Log Likelihood Ratio and Cubic Mutual Information (MI3), are consistently more effective and efficient than the other five AMs being examined, no one AM alone may be adequate in the identification of different types of collocations across different genres and corpus sizes. Research implications are also discussed.

Publisher

John Benjamins Publishing Company

Subject

Linguistics and Language,Language and Linguistics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3