Down-sampling from hierarchically structured corpus data

Author:

Sönning Lukas1ORCID

Affiliation:

1. University of Bamberg

Abstract

Abstract Resource constraints often force researchers to downsize the list of tokens returned by a corpus query. This paper sketches a methodology for down-sampling and offers a survey of current practices. We build on earlier work and extend the evaluation of down-sampling designs to settings where tokens are clustered by text file and lexeme. Our case study deals with third-person present-tense verb inflection in Early Modern English and focuses on five predictors: year, gender, genre, frequency, and phonological context. We evaluate two strategies for selecting 2,000 (out of 11,645) tokens: simple down-sampling, where each hit has the same selection probability; and structured down-sampling, where this probability is inversely proportional to the author- and verb-specific token count. We form 500 subsamples using each scheme and compare regression results to a reference model fit to the full set of cases. We observe that structured down-sampling shows better performance on several evaluation criteria.

Publisher

John Benjamins Publishing Company

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3