Predicting Consumption Intention of Consumer Relationship Management Users Using Deep Learning Techniques: A Review

Author:

Alaros Eshrak,Marjani Mohsen,Shafiq Dalia Abdulkareem,Asirvatham David

Abstract

Consumer/customer relationship management (CRM) can potentially influence business as it predicts changes in people’s perspectives, which could impact future sales. Accordingly, advancements in Information Technology are under investigation to see their capabilities to improve the work of CRM. Many prediction techniques, such as Data Mining, Machine Learning (ML), and Deep Learning (DL), were found to be utilized with CRM. ML methods were found to dominate other approaches in terms of the prediction of consumers’ intention to purchase. This review provides DL algorithms that are mostly used in the last five years, to support CRM to predict purchase intention for better product sales decisions. Prediction criteria related to online activities and behavior were found to be the most inputs of prediction models. DL approaches are slowly applied within purchase intention prediction due to their advanced capabilities in handling large and complicated datasets with minimum human supervision. DL models such as CNN and LSTM result in high accuracy in prediction intention with 98%. Future research uses the two algorithms (CNN, LSTM) compiled to make the best prediction consumption in CRM. Additionally, an effort is being made to create a framework for predicting purchases based on many DL algorithms and the most pertinent characteristics.

Publisher

Universitas Pendidikan Indonesia (UPI)

Subject

Space and Planetary Science,General Engineering,Geotechnical Engineering and Engineering Geology,General Chemical Engineering,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3