Artificial Neural Network Approach to Predict Biodiesel Production in Supercritical tert-Butyl Methyl Ether

Author:

Farobie Obie,Hasanah Nur

Abstract

In this study, for the first time artificial neural network was used to predict biodiesel yield in supercritical tert-butyl methyl ether (MTBE). The experimental data of biodiesel yield conducted by varying four input factors (i.e. temperature, pressure, oil-to-MTBE molar ratio, and reaction time) were used to elucidate artificial neural network model in order to predict biodiesel yield. The main goal of this study was to assess how accurately this artificial neural network model to predict biodiesel yield conducted under supercritical MTBE condition. The result shows that artificial neural network is a powerful tool for modeling and predicting biodiesel yield conducted under supercritical MTBE condition that was proven by a high value of coefficient of determination (R) of 0.9969, 0.9899, and 0.9658 for training, validation, and testing, respectively. Using this approach, the highest biodiesel yield was determined of 0.93 mol/mol (corresponding to the actual biodiesel yield of 0.94 mol/mol) that was achieved at 400 °C, under the reactor pressure of 10 MPa, oil-to-MTBE molar ratio of 1:40 within 15 min of reaction time.

Publisher

Universitas Pendidikan Indonesia (UPI)

Subject

Space and Planetary Science,General Engineering,Geotechnical Engineering and Engineering Geology,General Chemical Engineering,General Computer Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3