Ultrathin MoS2 nanosheets homogenously embedded in a N,O-codoped carbon matrix for high-performance lithium and sodium storage
Author:
Affiliation:
1. Shenzhen Engineering Lab for Supercapacitor Materials
2. Shenzhen Key Laboratory for Advanced Materials
3. School of Material Science and Engineering
4. Harbin Institute of Technology, Shenzhen
5. Shenzhen 518055
Abstract
Ultrathin MoS2 nanosheets uniformly embedded into a N,O-codoped carbon matrix possess outstanding cyclability and rate performances as a lithium/sodium ion battery anode.
Funder
National Natural Science Foundation of China
Publisher
Royal Society of Chemistry (RSC)
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2019/TA/C8TA10880C
Reference41 articles.
1. Building better batteries
2. Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries
3. Subnanoscopically and homogeneously dispersed SiOx/C composite spheres for high-performance lithium ion battery anodes
4. A spray-freezing approach to reduced graphene oxide/MoS2 hybrids for superior energy storage
5. Sn Wears Super Skin: A New Design for Long Cycling Batteries
Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Nanosheet-Interwoven Structures and Ion-Electron Decoupling Storage Enable Fe1-xS Fast Ion Transport in Li+/Na+/K+ Batteries;Nano Energy;2024-09
2. Superparamagnetic Fe Conversion Induces MoS2 Fast Ion Transport in Wide‐Temperature‐Range Sodium‐Ion Batteries;Advanced Functional Materials;2024-07-05
3. Engineering of single atomic Fe-N4 sites on hollow carbon cages to achieve highly reversible MoS2 anodes for Li-ion batteries;Journal of Colloid and Interface Science;2024-06
4. Nitrogen-doped carbon-coated MoS2 nanoflowers modified by CNTs with favorable microstructure and Li storage;Journal of Energy Storage;2024-06
5. MoS2@MWCNTs with Rich Vacancy Defects for Effective Piezocatalytic Degradation of Norfloxacin via Innergenerated-H2O2: Enhanced Nonradical Pathway and Synergistic Mechanism with Radical Pathway;ACS Applied Materials & Interfaces;2024-05-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3