Cobalt(ii) cation binding by proteins

Author:

Khrustalev Vladislav Victorovich1ORCID,Khrustaleva Tatyana Aleksandrovna2ORCID,Poboinev Victor Vitoldovich1ORCID,Karchevskaya Carolina Igorevna1,Shablovskaya Elizaveta Aleksandrovna1,Terechova Tatyana Germanovna1

Affiliation:

1. Department of General Chemistry, Belarusian State Medical University, Minsk, Dzerzinskogo, 83, Belarus. Tel: +375296487795

2. Biochemical Group of the Multidisciplinary Diagnostic Laboratory, Institute of Physiology of the National Academy of Sciences of Belarus, Minsk, Academicheskaya, 28, Belarus

Abstract

Abstract Herein, a set of non-homologous proteins (238) that could bind the cobalt(ii) cations was selected from all the available Protein Data Bank structures with Co2+ cations. The secondary structure motifs around the amino acid residues that most frequently bind the Co2+ cations (His, Asp, and Glu) as well as the amino acid contents of the inner and outer spheres of complexes were studied. The residues forming coordination bonds to Co2+ (from the inner spheres of the complexes) are overrepresented in the regions of random coil between two β strands, between a β strand and α helix, and in all types of β strands, except that situated between an α helix and β strand. The residues situated at a distance of less than 5 Å from the Co2+ cations, but unable to form coordination bond to them (from the outer spheres of the complexes), are overrepresented in the regions of coil between the β strand and α helix and between two β strands. The data obtained for the Co2+ binding sites was compared with the data obtained for the Mg2+ and Mn2+ binding sites. Although the preferable motifs of the secondary structure for Co2+ binding (beta strand–loop–beta strand and beta strand–loop–alpha helix) are the same as those for Mg2+ and Mn2+, there are some differences in the amino acid contents of the inner and outer spheres of these complexes. The Co2+ cations are preferably coordinated by a combination of His and Glu residues, whereas the Mn2+ and Mg2+ cations prefer a combination of His and Asp and just Asp residues, respectively. As a result, two computer algorithms were developed that could evaluate the possibility of Mg2+ and Mn2+ replacement by the Co2+ cations (chemres.bsmu.by). These algorithms should help to investigate the pathogenesis of cobalt intoxication occurring in patients with cobalt-containing artificial joints.

Publisher

Oxford University Press (OUP)

Subject

Metals and Alloys,Biochemistry,Biomaterials,Biophysics,Chemistry (miscellaneous)

Reference29 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3