Electrocatalytic reduction of CO2to CO with 100% faradaic efficiency by using pyrolyzed zeolitic imidazolate frameworks supported on carbon nanotube networks
Author:
Affiliation:
1. Collaborative Innovation Center of Chemistry for Energy Materials
2. State Key Laboratory of Physical Chemistry of Solid Surfaces
3. Department of Chemistry
4. College of Chemistry and Chemical Engineering
5. Xiamen University
Abstract
100% faradaic efficiency is achieved in electrochemical reduction of CO2to COviacoupling between ZIFs and CNTs.
Funder
Ministry of Science and Technology of the People's Republic of China
China Postdoctoral Science Foundation
National Natural Science Foundation of China
Division of Materials Research
Publisher
Royal Society of Chemistry (RSC)
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2017/TA/C7TA08431E
Reference39 articles.
1. Thermal, electrochemical, and photochemical conversion of CO2 to fuels and value-added products
2. A comprehensive mechanism for the Fischer-Tropsch synthesis
3. Beyond Petrochemicals: The Renewable Chemicals Industry
4. Single catalyst electrocatalytic reduction of CO2in water to H2+CO syngas mixtures with water oxidation to O2
5. Highly oriented MOF thin film-based electrocatalytic device for the reduction of CO2 to CO exhibiting high faradaic efficiency
Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Iron-based metal–organic frameworks and derivatives for electrochemical energy storage and conversion;Coordination Chemistry Reviews;2024-10
2. Pd-induced polarized Cu0-Cu+ sites for electrocatalytic CO2-to-C2+ conversion in acidic medium;Journal of Colloid and Interface Science;2024-10
3. Layered double hydroxides and metal-organic frameworks for electrocatalytic CO2 reduction: A comprehensive review;Carbon Trends;2024-09
4. Structure-performance relationships in MOF-derived electrocatalysts for CO2 reduction;Progress in Energy and Combustion Science;2024-09
5. Electrochemical Conversion of CO2 Using Metal-Organic Frameworks-Based Materials: A Review on Recent Progresses and Outlooks;Chemosphere;2024-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3