Applying machine learning to boost the development of high-performance membrane electrode assembly for proton exchange membrane fuel cells
Author:
Affiliation:
1. National Laboratory of Solid State Microstructures
2. College of Engineering and Applied Sciences
3. Collaborative Innovation Center of Advanced Microstructures
4. Nanjing University
5. Nanjing 210093
Abstract
A comprehensive machine learning workflow consisting of feature selection, decision modeling, regression modeling, and extremum optimization was set up to give predictions based on big-data, bringing revolutionary changes to labor-intensive fields.
Funder
National Natural Science Foundation of China
National Basic Research Program of China
Publisher
Royal Society of Chemistry (RSC)
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2021/TA/D0TA12571G
Reference45 articles.
1. Ternary heterogeneous Pt–Ni–Au nanowires with enhanced activity and stability for PEMFCs
2. The effects of Nafion® ionomer content in PEMFC MEAs prepared by a catalyst-coated membrane (CCM) spraying method
3. Investigation of the effect of humidity at both electrode on the performance of PEMFC using orthogonal test method
4. Technical study of a PEM fuel cell on the Psychrometric chart
5. Modeling polymer electrolyte fuel cells: an innovative approach
Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A review of additional modifications of additives through hydrophilic functional groups for the application of proton exchange membranes in fuel cells;Journal of Power Sources;2024-12
2. Different applications of machine learning approaches in materials science and engineering: Comprehensive review;Engineering Applications of Artificial Intelligence;2024-09
3. High-precision identification of polarization processes of proton exchange membrane fuel cells through relaxation time analysis: Targeted experimental design and verification;Applied Energy;2024-08
4. Exploring local oxygen transport in low-Pt loading proton exchange membrane fuel cells: A comprehensive review;eTransportation;2024-05
5. Predicting Diffusion Coefficients in Nafion Membranes during the Soaking Process Using a Machine Learning Approach;Polymers;2024-04-25
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3