Rechargeable ultrahigh-capacity tellurium–aluminum batteries
Author:
Affiliation:
1. State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing
2. Beijing 100083
3. P. R. China
4. Institute of Advanced Structure Technology, Beijing Institute of Technology
5. Beijing 100081
Abstract
A novel cell configuration allows a Te nanowire positive electrode for delivering an ultrahigh discharge capacity in tellurium–aluminum batteries.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
National Basic Research Program of China
Publisher
Royal Society of Chemistry (RSC)
Subject
Pollution,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment,Environmental Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2019/EE/C9EE00862D
Reference53 articles.
1. Sustainability and in situ monitoring in battery development
2. Defect-Controlled Formation of Triclinic Na2 CoP2 O7 for 4 V Sodium-Ion Batteries
3. Electrospun NaVPO4 F/C Nanofibers as Self-Standing Cathode Material for Ultralong Cycle Life Na-Ion Batteries
4. MgFeSiO4 as a potential cathode material for magnesium batteries: ion diffusion rates and voltage trends
5. An ultrafast rechargeable aluminium-ion battery
Cited by 187 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. d‐Orbital Induced Electronic Structure Reconfiguration toward Manipulating Electron Transfer Pathways of Metallo‐Porphyrin for Enhanced AlCl2+ Storage;Advanced Materials;2024-09-10
2. Insights on energy storage mechanism and rational design of chalcogenide-based cathode materials towards advanced non-aqueous Al-ion batteries;Journal of Energy Storage;2024-07
3. Highly Reversible Positive‐Valence Conversion of Sulfur Chemistry for High‐Voltage Zinc–Sulfur Batteries;Advanced Materials;2024-06-17
4. Aluminum batteries: Opportunities and challenges;Energy Storage Materials;2024-06
5. Elucidating Consequences of Selenium Crystallinity on Its Electrochemical Reduction in Aluminum–Selenium Batteries;ACS Materials Letters;2024-05-24
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3