Metallomic and lipidomic analysis of S. cerevisiae response to cellulosic copper nanoparticles uncovers drivers of toxicity

Author:

Winans Matthew J1ORCID,Gallagher Jennifer E G1ORCID

Affiliation:

1. West Virginia University – Biology Department, 53 Campus Drive LSB 3140, Morgantown, WV, 26506, USA

Abstract

Abstract Nanotechnology is a promising new technology, of which antimicrobial metal nanocomposites are predicted to become valuable in medical and food packaging applications. Copper is a redox-active antimicrobial metal that can become increasingly toxic depending on the target biomolecule’s donor atom selectivity and the chemical species of copper present. Mass is the traditional measurement of the intrinsic elemental chemistry, but this practice fails to reflect the morphology and surface area reactivity of nanotechnology. The carboxymethyl cellulose copper nanoparticles (CMC-Cu) investigated in this study have unique and undefined toxicity to Saccharomyces cerevisiae that is different from CuSO4. Cellular surface damage was found in scanning electron micrographs upon CMC-Cu exposure. Further investigation into the lipids revealed altered phosphatidylcholine and phosphatidylethanolamine membrane composition, as well as depleted triacylglycerols, suggesting an impact on the Kennedy lipid pathway. High levels of reactive oxygen species were measured which likely played a role in the lipid peroxidation detected with CMC-Cu treatment. Metal homeostasis was affected by CMC-Cu treatment. The copper sensitive yeast strain, YJM789, significantly decreased cellular zinc concentrations while the copper concentrations increased, suggesting a possible ionic mimicry relationship. In contrast to other compounds that generate ROS, no evidence of genotoxicity was found. As commonplace objects become more integrated with nanotechnology, humanity must look forward past traditional measurements of toxicity.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Metals and Alloys,Biochemistry,Biomaterials,Biophysics,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3