Effects of high-shear mixing and the graphene oxide weight fraction on the electrochemical properties of the GO/Ni(OH)2 electrode
Author:
Affiliation:
1. School of Materials Science and Engineering
2. Harbin Institute of Technology
3. Harbin 150001
4. China
5. Heilongjiang University of Science and Technology
Abstract
High-shear mixing can efficiently enhance the homogeneity and the electrochemical performances of the GO/Ni(OH)2 composite.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Publisher
Royal Society of Chemistry (RSC)
Subject
Inorganic Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2020/DT/C9DT04525B
Reference74 articles.
1. Carbons and Electrolytes for Advanced Supercapacitors
2. High-Performance Asymmetric Supercapacitors Based on Multilayer MnO2/Graphene Oxide Nanoflakes and Hierarchical Porous Carbon with Enhanced Cycling Stability
3. Morphologically confined hybridization of tiny CoNi2S4 nanosheets into S, P co-doped graphene leading to enhanced pseudocapacitance and rate capability
4. Morphology and crystallinity-controlled synthesis of etched CoAl LDO/MnO2 hybrid nanoarrays towards high performance supercapacitors
5. Materials for electrochemical capacitors
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Interfacial effects in Ni(OH)2/MnO@Ni aerogel heterostructures promote highly efficient electrooxidation of ethylene glycol to formate and hydrogen;International Journal of Hydrogen Energy;2024-07
2. Ni/Mn electroactive nanohybrids physic-chemical properties for ulterior new generation of supercapacitors;Materials Chemistry and Physics;2024-05
3. A 3D binder-free rGO/NiMnCo nanosheet for highly efficient hybrid supercapacitors and ion-selective capacitive deionization;Journal of Materials Chemistry A;2024
4. Strong anion exchange for improved NiCo2S4 oxygen reduction reaction via interlayer spacing manipulation;International Journal of Hydrogen Energy;2022-03
5. Printable Graphene Oxide Nanocomposites as Versatile Platforms for Immobilization of Functional Biomolecules;Macromolecular Materials and Engineering;2022-01-24
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3