Distorted quantum dots enhance the efficiency of alkaline oxygen electrocatalysis
Author:
Affiliation:
1. The School of Chemistry and Chemical Engineering
2. State Key Laboratory of Power Transmission Equipment & System Security and New Technology
3. Chongqing University
4. Chongqing City 400044
5. PR China
6. The School of Electrical Engineering
Abstract
Scattering quantum dots bind chemically to substrate is considered as an efficient kind of strategy to modulate electronical construction and catalytic properties in the research of electrocatalytic materials.
Funder
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
Publisher
Royal Society of Chemistry (RSC)
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2020/TA/D0TA07975H
Reference58 articles.
1. Recent Advances in Electrocatalysts for Oxygen Reduction Reaction
2. A versatile biomass derived carbon material for oxygen reduction reaction, supercapacitors and oil/water separation
3. Understanding Catalytic Activity Trends in the Oxygen Reduction Reaction
4. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs
5. Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Regulable in-situ autoredox for anchoring synergistic Ni/NiO nanoparticles on reduced graphene oxide with boosted alkaline electrocatalytic oxygen evolution;Journal of Colloid and Interface Science;2023-10
2. Transition Metal Nitrides for Electrocatalytic Application: Progress and Rational Design;Nanomaterials;2022-08-03
3. Design of heterojunction with components in different dimensions for electrocatalysis applications;Frontiers of Physics;2022-07-14
4. Heterostructures induced between platinum nanoparticles and vanadium carbide boosting hydrogen evolution reaction;Applied Catalysis A: General;2022-03
5. Ultrafine platinum-iridium distorted nanowires as robust catalysts toward bifunctional hydrogen catalysis;Journal of Materials Chemistry A;2022
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3