Nitrogen reduction reaction energy and pathways in metal-zeolites: deep learning and explainable machine learning with local acidity and hydrogen bonding features
Author:
Affiliation:
1. Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
Abstract
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Publisher
Royal Society of Chemistry (RSC)
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2022/TA/D2TA03563D
Reference73 articles.
1. Challenges in reduction of dinitrogen by proton and electron transfer
2. Theoretical screening of single atoms anchored on defective graphene for electrocatalytic N2 reduction reactions: a DFT study
3. Tackling the Activity and Selectivity Challenges of Electrocatalysts toward the Nitrogen Reduction Reaction via Atomically Dispersed Biatom Catalysts
4. Atom-Pair Catalysts Supported by N-Doped Graphene for the Nitrogen Reduction Reaction: d-Band Center-Based Descriptor
5. Potassium‐Ion‐Assisted Regeneration of Active Cyano Groups in Carbon Nitride Nanoribbons: Visible‐Light‐Driven Photocatalytic Nitrogen Reduction
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Toward Interpretable Machine Learning Models for Predicting Spectroscopy, Catalysis, and Reactions;Exploring Chemical Concepts Through Theory and Computation;2024-05-17
2. Machine-learning-assisted hydrogen adsorption descriptor design for bilayer MXenes;Journal of Cleaner Production;2024-04
3. Machine Learning Prediction of Transition-State Energies in Small-Pore Zeolites Combining Acidity and Topology Descriptors;The Journal of Physical Chemistry C;2024-02-21
4. Progress in Single/Multi Atoms and 2D‐Nanomaterials for Electro/Photocatalytic Nitrogen Reduction: Experimental, Computational and Machine Leaning Developments;Advanced Energy Materials;2024-02-11
5. The Synergistic Effect between Metal and Sulfur Vacancy to Boost CO2 Reduction Efficiency: A Study on Descriptor Transferability and Activity Prediction;JACS Au;2024-01-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3