Highly efficient large-scale preparation and electromagnetic property control of silica–NiFeP double shell composite hollow particles
Author:
Affiliation:
1. Technical Institute of Physics and Chemistry
2. Chinese Academy of Sciences
3. Beijing 100190
4. China
5. University of Chinese Academy of Sciences
Abstract
Micron-sized double shell composite hollow particles with excellent electromagnetic behavior are prepared using a highly efficient and large scale method.
Funder
National Natural Science Foundation of China
Publisher
Royal Society of Chemistry (RSC)
Subject
General Chemical Engineering,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2017/RA/C7RA02710A
Reference80 articles.
1. Three-dimensional SiO2@Fe3O4 core/shell nanorod array/graphene architecture: synthesis and electromagnetic absorption properties
2. Shell Thickness-Dependent Microwave Absorption of Core–Shell Fe3O4@C Composites
3. Morphology-dominant microwave absorption enhancement and electron tomography characterization of CoO self-assembly 3D nano-flowers
4. Reduced Graphene Oxides: Light-Weight and High-Efficiency Electromagnetic Interference Shielding at Elevated Temperatures
5. Microwave absorption properties of core double-shell FeCo/C/BaTiO3nanocomposites
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Ruthenium-doping-induced strong electromagnetic loss in FeCo nanoparticles by orbital hybridization and electron transmission;Journal of Alloys and Compounds;2022-12
2. Sodiumphosphinate-assisted synthesis of P-doped FeCo microcubes and their electromagnetic scattering characteristics;Journal of Alloys and Compounds;2020-04
3. Recent progress in the syntheses and applications of multishelled hollow nanostructures;Materials Chemistry Frontiers;2020
4. Dopamine-derived cavities/Fe3O4 nanoparticles-encapsulated carbonaceous composites with self-generated three-dimensional network structure as an excellent microwave absorber;RSC Advances;2019
5. Tunable dielectric properties of mesoporous carbon hollow microspheres via textural properties;Nanotechnology;2018-03-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3