Hydroxyl functionalization improves the surface passivation of nanostructured silicon solar cells degraded by epitaxial regrowth
Author:
Affiliation:
1. Department of Materials and Chemical Engineering
2. Hanyang University
3. Ansan
4. Korea
5. Institute of Physics
6. Martin-Luther-Universität Halle-Wittenberg
7. Fraunhofer Institute for Mechanics of Materials IWM
8. Halle 06120
9. Germany
Abstract
Nanoscale epitaxy of silicon is found to deteriorate the passivation performance by ALD-Al2O3in nanostructured solar cells. Hydroxyl functionalization by oxygen plasma decreased the surface recombination velocity.
Funder
National Research Foundation of Korea
Publisher
Royal Society of Chemistry (RSC)
Subject
General Chemical Engineering,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2015/RA/C5RA03775A
Reference29 articles.
1. Coaxial silicon nanowires as solar cells and nanoelectronic power sources
2. Silicon Nanowire Radial p−n Junction Solar Cells
3. Controlled Synthesis of Millimeter-Long Silicon Nanowires with Uniform Electronic Properties
4. Broadband Optical Antireflection Enhancement by Integrating Antireflective Nanoislands with Silicon Nanoconical-Frustum Arrays
5. Nonlithographic Patterning and Metal-Assisted Chemical Etching for Manufacturing of Tunable Light-Emitting Silicon Nanowire Arrays
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Black Si Photocathode with a Conformal and Amorphous MoSx Catalytic Layer Grown Using Atomic Layer Deposition for Photoelectrochemical Hydrogen Evolution;ACS Applied Materials & Interfaces;2022-03-15
2. Silicon Substrate Treated with Diluted NaOH Aqueous for Si/PEDOT: PSS Heterojunction Solar Cell with Performance Enhancement;Energies;2020-09-08
3. Effect of interfacial passivation on inverted pyramid silicon/poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) heterojunction solar cells;Thin Solid Films;2020-09
4. Sulfur-Enhanced Field-Effect Passivation using (NH4)2S Surface Treatment for Black Si Solar Cells;ACS Applied Materials & Interfaces;2019-06-17
5. Toward a planar black silicon technology for 50 μm-thin crystalline silicon solar cells;Optics Express;2016-07-29
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3