Enhanced urea oxidization electrocatalysis on spinel cobalt oxide nanowires via on-site electrochemical defect engineering
Author:
Affiliation:
1. Shenzhen Key Laboratory of Special Functional Materials
2. Guangdong Research Centre for Interfacial Engineering of Functional Materials
3. College of Materials Science and Engineering
4. Shenzhen University
5. Shenzhen 518060
Abstract
A reversed-potential tuning strategy is proposed to introduce defects on the surface of cobalt oxide nanowires, enabling significantly improved electrocatalytic performance for urea oxidization under alkaline conditions.
Funder
National Natural Science Foundation of China
Science, Technology and Innovation Commission of Shenzhen Municipality
Shenzhen University
Publisher
Royal Society of Chemistry (RSC)
Subject
Materials Chemistry,General Materials Science
Link
http://pubs.rsc.org/en/content/articlepdf/2021/QM/D0QM01119C
Reference49 articles.
1. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting
2. Powering the planet: Chemical challenges in solar energy utilization
3. The role of hydrogen and fuel cells in the global energy system
4. Combining theory and experiment in electrocatalysis: Insights into materials design
5. A review on fundamentals for designing oxygen evolution electrocatalysts
Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhancement of urea oxidation reaction in alkaline condition via heterointerface engineering;Chemical Engineering Journal;2024-09
2. Coherent Design of CoAl Layered Double Hydroxide-Derived Co3O4 Cubes as a Competent Electrocatalyst for Water Splitting and Urea Electrolysis;Energy & Fuels;2024-06-10
3. Electronic structure engineering of electrocatalyst for efficient urea oxidation reaction;Nano Energy;2024-03
4. Hollow CuSe nanocubes as a bifunctional electrocatalyst for energy-saving overall urea–water electrolysis;New Journal of Chemistry;2024
5. Synthesis of defective Ni-Mn layered double hydroxides nanosheets via alkali-assisted Mo doping for urea electro-oxidation;Fuel;2024-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3