Tolerable upper intake level of iron damages the intestine and alters the intestinal flora in weaned piglets

Author:

Ding Haoxuan1ORCID,Yu Xiaonan1,Chen Lingjun1,Han Jianan1,Zhao Yang1,Feng Jie1

Affiliation:

1. College of Animal Science, Zhejiang University, Key Laboratory of animal feed and nutrition of Zhejiang Province, Hangzhou, China

Abstract

Abstract Iron supplementation has been an intervention to improve iron storage and prevent iron deficiency anemia in weaned piglets and the recommended nutrient intake (RNI) and tolerable upper intake levels (UL) of iron have been established. The purpose of this study is to investigate the potential harm of UL iron to the gut and microbes of weaned piglets. Thirty 23 day old weaned piglets were assigned to three dietary treatments: a basal diet supplemented with 100 (RNI), 300, and 3000 (UL) mg FeSO4 per kg diet for 28 days. Then, we used the intestinal porcine epithelial cell line (IPEC-1) as a cell model to study the effect of UL iron on the gut of weaned piglets. Weaned piglets showed a significant decrease in villus height after feeding on a UL iron diet (P < 0.05). The protein levels of DMT1 and Zip14 decreased, and the protein levels of ferritin increased in the duodenal mucosa (P < 0.05) of UL iron fed weaned piglets. Moreover, UL iron also increased the content of ROS and malondialdehyde and decreased the activity of superoxide dismutase in the duodenal mucosa of weaned piglets (P < 0.05). The addition of UL iron to the diet significantly reduced the expression of tight junction proteins Claudin-1, Occludin, and ZO-1 in the duodenal mucosa of weaned piglets (P < 0.05). In the IPEC-1 cell model, iron induced the production of cytosolic and mitochondrial ROS and reduced the mitochondrial membrane potential, which in turn led to cellular vacuolation and fibrosis. Furthermore, UL iron significantly altered the cecum flora of weaned piglets, and the relative abundance of Clostridiales, Faecalibacterium, and Prevotellaceae decreased significantly (P < 0.05), while the relative abundance of Desulfovibrio and Anaerovibrio increased significantly (P < 0.05). In conclusion, UL iron caused damage to the intestinal villi, induced oxidative stress, reduced iron absorption protein, damaged the intestinal barrier, and modified the intestinal microbial structure in weaned piglets.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Metals and Alloys,Biochemistry,Biomaterials,Biophysics,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3