Performance enhancement of organic photovoltaic devices enabled by Au nanoarrows inducing surface plasmonic resonance effect
Author:
Affiliation:
1. State Key Laboratory on Integrated Optoelectronics
2. Jilin University
3. College of Electronic Science and Engineering
4. Changchun 130012
5. People's Republic of China
Abstract
The significant performance enhancement of organic photovoltaic devices was achieved upon incorporating Au nanoarrows in a ZnO buffer layer.
Funder
National Natural Science Foundation of China
Publisher
Royal Society of Chemistry (RSC)
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Link
http://pubs.rsc.org/en/content/articlepdf/2016/CP/C6CP04302J
Reference47 articles.
1. Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufacture using flexographic printing, slot-die coating and rotary screen printing
2. Business, market and intellectual property analysis of polymer solar cells
3. Optically monitoring and controlling nanoscale topography during semiconductor etching
4. Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufacture using flexographic printing, slot-die coating and rotary screen printing
5. Efficient light harvesting in multiple-device stacked structure for polymer solar cells
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Plasmonics in Organic Solar Cells: Toward Versatile Applications;ACS Applied Electronic Materials;2023-02-09
2. Embedding plasmonic gold nanoparticles in a ZnO layer enhanced the performance of inverted organic solar cells based on an indacenodithieno[3,2-b]thiophene-alt-5,5′-di(thiophen-2-yl)-2,2′-bithiazole-based push–pull polymer;RSC Advances;2023
3. A review on plasmonic nanostructures for efficiency enhancement of organic solar cells;Materials Today Physics;2022-05
4. Research Progress of Plasmonic Nanostructure-Enhanced Photovoltaic Solar Cells;Nanomaterials;2022-02-25
5. Organic Photovoltaic Cells: Opportunities and Challenges;Materials Horizons: From Nature to Nanomaterials;2022
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3