Low temperature preparation of TiO2 nanoparticle chains without hydrothermal treatment for highly efficient dye-sensitized solar cells
Author:
Affiliation:
1. Department of Chemistry
2. Collaborative Innovation Centre of Chemistry for Energy Materials
3. Department of Macromolecular Science
4. State Key Laboratory of Molecular Engineering of Polymers
5. Lab of Advanced Materials
Abstract
Titania chains composed of 5 nm nanoparticles are prepared at low temperatures without hydrothermal treatment for efficient dye-sensitized solar cells.
Publisher
Royal Society of Chemistry (RSC)
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2015/TA/C4TA06679K
Reference18 articles.
1. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films
2. Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency
3. Multistack Integration of Three-Dimensional Hyperbranched Anatase Titania Architectures for High-Efficiency Dye-Sensitized Solar Cells
4. Mesoporous Anatase TiO2Beads with High Surface Areas and Controllable Pore Sizes: A Superior Candidate for High-Performance Dye-Sensitized Solar Cells
5. Nano-embossed Hollow Spherical TiO2 as Bifunctional Material for High-Efficiency Dye-Sensitized Solar Cells
Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Recent Advancements in TiO2 Nanostructures: Sustainable Synthesis and Gas Sensing;Nanomaterials;2023-04-20
2. Plasmonic silver loaded anatase titanium dioxide nanospheres photoanode for dye-sensitized solar cell;Results in Chemistry;2023-01
3. Hybrid Photocatalyst Nanomaterials in Solar Cell Applications;Multifunctional Hybrid Semiconductor Photocatalyst Nanomaterials;2023
4. Chemical methods for the growth of oxides;Defect-Induced Magnetism in Oxide Semiconductors;2023
5. Recent advances in ultra-low temperature (sub-zero to 100 °C) synthesis, mechanism and applications of titania (TiO2) nanoparticles;Materials Advances;2021
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3