Coronary artery decision algorithm trained by two-step machine learning algorithm
Author:
Affiliation:
1. Department of Mechanical Engineering
2. Yonsei University
3. Korea
4. Division of Cardiology
5. Severance Cardiovascular Hospital
6. Yonsei University College of Medicine
7. Department of Electrical Engineering
8. Sejong University
Abstract
A two-step machine learning (ML) algorithm for coronary artery decision making is introduced, to increase the data quality by providing flow characteristics and biometric features by aid of computational fluid dynamics (CFD).
Funder
National Research Foundation of Korea
Publisher
Royal Society of Chemistry (RSC)
Subject
General Chemical Engineering,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2020/RA/C9RA08999C
Reference35 articles.
1. Fractional flow reserve: a review
2. Angiographic Versus Functional Severity of Coronary Artery Stenoses in the FAME Study
3. Are high doses of intracoronary adenosine an alternative to standard intravenous adenosine for the assessment of fractional flow reserve?
4. Fractional Flow Reserve Computed from Noninvasive CT Angiography Data: Diagnostic Performance of an On-Site Clinician-operated Computational Fluid Dynamics Algorithm
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Artificial Intelligence Analysis of ECG to Determine Fractional Flow Reserve (FFR);2024-08-28
2. Non-invasive fractional flow reserve estimation using deep learning on intermediate left anterior descending coronary artery lesion angiography images;Scientific Reports;2024-01-20
3. Artificial intelligence in estimating fractional flow reserve: a systematic literature review of techniques;BMC Cardiovascular Disorders;2023-08-18
4. Computational Fractional Flow Reserve From Coronary Computed Tomography Angiography—Optical Coherence Tomography Fusion Images in Assessing Functionally Significant Coronary Stenosis;Frontiers in Cardiovascular Medicine;2022-06-13
5. Optimization of FFR prediction algorithm for gray zone by hemodynamic features with synthetic model and biometric data;Computer Methods and Programs in Biomedicine;2022-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3