Excited state C–N bond dissociation and cyclization of tri-aryl amine-based OLED materials: a theoretical investigation
Author:
Affiliation:
1. Department of Chemistry
2. Indian Institute of Technology Madras
3. Chennai 600036
4. India
5. Inorganic and Physical Chemistry Laboratory
6. Central Leather Research Institute
7. Chennai 600020
Abstract
Chemical degradation of TAA occurs through the conical intersection present between ground and first excited singlet state with C–N bond dissociation, which channels the excited molecules to dissociate and form radical fragments or cyclized products.
Publisher
Royal Society of Chemistry (RSC)
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Link
http://pubs.rsc.org/en/content/articlepdf/2019/CP/C8CP06314A
Reference64 articles.
1. Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells
2. Mimicking Photosynthetic Solar Energy Transduction
3. Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion
4. Role of renewable energy sources in environmental protection: A review
5. Solar thermochemical production of hydrogen––a review
Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deuterated Multiple‐Resonance Thermally Activated Delayed Fluorescence Emitter and Their Application in Vacuum‐Deposited Organic Light‐Emitting Diodes;Advanced Optical Materials;2024-07-17
2. Precise Regulation on the Bond Dissociation Energy of Exocyclic C–N Bonds in Various N-Heterocycle Electron Donors via Machine Learning;The Journal of Physical Chemistry Letters;2024-04-16
3. Unraveling Degradation Processes and Strategies for Enhancing Reliability in Organic Light-Emitting Diodes;Nanomaterials;2023-11-25
4. Degradation mechanisms and lifetime extending strategy of phosphorescent and thermally activated delayed-fluorescence organic light-emitting diodes;Materials Today;2023-09
5. Organic Light-Emitting Diodes with Ultrathin Emitting Nanolayers;Electronics;2023-07-21
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3