Identifying structural signatures of shear banding in model polymer nanopillars
Author:
Affiliation:
1. Department of Physics and Astronomy
2. University of Pennsylvania
3. Philadelphia
4. USA
5. Department of Chemical and Biomolecular Engineering, University of Pennsylvania
Abstract
Shear band formation often proceeds fracture in amorphous materials. While mesoscale models postulate an underlying defect structure to explain this phenomenon, they do not detail the microscopic properties of these defects especially in strongly confined materials. Here, we use machine learning methods to uncover these microscopic defects in simulated polymer nanopillars.
Funder
Division of Civil, Mechanical and Manufacturing Innovation
Division of Materials Research
Publisher
Royal Society of Chemistry (RSC)
Subject
Condensed Matter Physics,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2019/SM/C8SM02423E
Reference70 articles.
1. Directed Assembly of Block Copolymer Blends into Nonregular Device-Oriented Structures
2. Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence
3. Multicolored Organic/Inorganic Hybrid Perovskite Light-Emitting Diodes
4. Polymer nanocomposite films with extremely high nanoparticle loadings via capillary rise infiltration (CaRI)
5. Nanoporous Polymer-Infiltrated Nanoparticle Films with Uniform or Graded Porosity via Undersaturated Capillary Rise Infiltration
Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machine learning that predicts well may not learn the correct physical descriptions of glassy systems;Physical Review Research;2024-07-23
2. Predicting compatibilized polymer blend toughness;Science Advances;2024-06-21
3. Shear bands in amorphous polymers under four-point bending;International Journal of Mechanical Sciences;2024-05
4. Machine Learning in Soft Matter: From Simulations to Experiments;Advanced Functional Materials;2024-01-31
5. Elasto-plastic effects on shape-shifting electron-beam-patterned gel-based micro-helices;Materials Horizons;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3