Machine learning for high performance organic solar cells: current scenario and future prospects
Author:
Affiliation:
1. Key Laboratory of Cluster Science of Ministry of Education
2. Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
3. School of Chemistry and Chemical Engineering
4. Beijing Institute of Technology
5. Beijing
Abstract
In this review, current research status about the machine learning use in organic solar cell research is reviewed. We have discussed the challenges in anticipating the data driven material design.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Beijing Institute of Technology
Publisher
Royal Society of Chemistry (RSC)
Subject
Pollution,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment,Environmental Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2021/EE/D0EE02838J
Reference100 articles.
1. Conjugated Polymer-Based Organic Solar Cells
2. Large π-Aromatic Molecules as Potential Sensitizers for Highly Efficient Dye-Sensitized Solar Cells
3. Recent progress in porphyrin-based materials for organic solar cells
4. A novel thiazole based acceptor for fullerene-free organic solar cells
5. Electron‐Deficient and Quinoid Central Unit Engineering for Unfused Ring‐Based A 1 –D–A 2 –D–A 1 ‐Type Acceptor Enables High Performance Nonfullerene Polymer Solar Cells with High V oc and PCE Simultaneously
Cited by 259 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machine learning using fingerprints and dye design in the search of lower hole reorganization energy;Dyes and Pigments;2024-12
2. Polymer design with enhanced crystallization tendency aided by machine learning;Physica B: Condensed Matter;2024-12
3. Top 20 influential AI-based technologies in chemistry;Artificial Intelligence Chemistry;2024-12
4. Synthesis guidance of PbS colloidal quantum dots with neural network model for short wave infrared photodetector;Optical Materials;2024-11
5. Recent progress on non-fullerene acceptor materials for organic solar cells;Materials Today Chemistry;2024-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3