Polycondensation of guanidine hydrochloride into a graphitic carbon nitride semiconductor with a large surface area as a visible light photocatalyst
Author:
Affiliation:
1. The Academy of Fundamental and Interdisciplinary Science
2. Harbin Institute of Technology
3. Harbin 150080, China
4. State Key Laboratory of Urban Water Resource and Environment
5. School of Life Science and Technology
Abstract
g-C3N4 prepared from guanidine hydrochloride exhibited a large surface area and a reduced recombination rate of electrons and holes, leading to improved photocatalytic activity for degrading RhB under visible light.
Publisher
Royal Society of Chemistry (RSC)
Subject
Catalysis
Link
http://pubs.rsc.org/en/content/articlepdf/2014/CY/C4CY00411F
Reference45 articles.
1. Fine Tuning of the Face Orientation of ZnO Crystals to Optimize Their Photocatalytic Activity
2. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides
3. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations
4. Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting
5. Electrochemical Photolysis of Water at a Semiconductor Electrode
Cited by 110 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A critical review on non-metal doped g-C3N4 based photocatalyst for organic pollutant remediation with sustainability assessment by life cycle analysis;Environmental Research;2024-10
2. Emerging Roles of Graphitic Carbon Nitride-based Materials in Biomedical Applications;ACS Biomaterials Science & Engineering;2024-08-01
3. Exploring the production and storage of hydrogen energy using graphitic carbon nitride (g-C3N4);International Journal of Hydrogen Energy;2024-06
4. CO2 Photoreduction over Semiconducting 2D Materials with Supported Single Atoms: Recent Progress and Challenges;Chemistry – A European Journal;2024-04-25
5. Photocatalytic Degradation of Pollutants Using Advanced Ceramics: Materials, Mechanism, Synthesis, and Applications;Journal of Inorganic and Organometallic Polymers and Materials;2024-04-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3