In situ growth of Pt3Ni nanoparticles on an A-site deficient perovskite with enhanced activity for the oxygen reduction reaction
Author:
Affiliation:
1. Department of Mechanical and Aerospace Engineering
2. The Hong Kong University of Science and Technology
3. SAR China
4. Department of Chemical and Biomolecular Engineering
Abstract
A perovskite material with in situ exsolved Pt3Ni nanoparticles is applied for oxygen reduction reaction catalysis with dramatically improved activity.
Publisher
Royal Society of Chemistry (RSC)
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2017/TA/C7TA00349H
Reference41 articles.
1. Metal-Air Batteries with High Energy Density: Li-Air versus Zn-Air
2. Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuelcells
3. A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles
4. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries
5. Nonstoichiometric Oxides as Low-Cost and Highly-Efficient Oxygen Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices
Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Advances in Advanced In Situ Assembled Composite Electrode Materials for Enhanced Solid Oxide Cell Performance;Advanced Functional Materials;2024-08-02
2. The effect of double perovskite decoration in NiP composite coating for efficient electrocatalytic hydrogen evolution;International Journal of Hydrogen Energy;2024-08
3. Electrical and electrochemical properties of A-site non-stoichiometry Ca0.67La0.22□0.11Ti(1− x)CrxO3−δ electrolyte materials for solid oxide fuel cells;Ceramics International;2024-08
4. Construction of complex metal nanoparticles via solid-phase ion diffusion for sustainable catalysis;Materials Today;2024-06
5. A New Approach to Fuel Cell Electrodes: Lanthanum Aluminate Yielding Fine Pt Nanoparticle Exsolution for Oxygen Reduction Reaction;Advanced Energy Materials;2024-02-13
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3