A micropatterned conductive electrospun nanofiber mesh combined with electrical stimulation for synergistically enhancing differentiation of rat neural stem cells
Author:
Affiliation:
1. Key Laboratory of Polymer Ecomaterials
2. Changchun Institute of Applied Chemistry
3. Chinese Academy of Sciences
4. Changchun 130022
5. P. R. China
6. Department of Chemistry
7. Tsinghua University
8. Beijing 100084
Abstract
The micropatterned conductive nanofiber mesh combined with ES effectively facilitates the differentiation of NSCs into neuron and suppresses the formation of astrocytes.
Funder
National Natural Science Foundation of China
Chinese Academy of Sciences
Japan Society for the Promotion of Science
Publisher
Royal Society of Chemistry (RSC)
Subject
General Materials Science,Biomedical Engineering,General Chemistry,General Medicine
Link
http://pubs.rsc.org/en/content/articlepdf/2020/TB/C9TB02864A
Reference50 articles.
1. Epidemiology of traumatic spinal cord injury: trends and future implications
2. Repair, protection and regeneration of spinal cord injury
3. The Present and Future for Peripheral Nerve Regeneration
4. Electrically conductive MEH-PPV:PCL electrospun nanofibres for electrical stimulation of rat PC12 pheochromocytoma cells
5. Comparison and characterization of multiple biomaterial conduits for peripheral nerve repair
Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Electrostimulation via a 3D-printed, biomimetic, neurotrophic, electroconductive scaffold for the promotion of axonal regrowth after spinal cord injury;Materials Today;2024-10
2. Axon-like aligned conductive CNT/GelMA hydrogel fibers combined with electrical stimulation for spinal cord injury recovery;Bioactive Materials;2024-05
3. Advances in electroactive bioscaffolds for repairing spinal cord injury;Biomedical Materials;2024-04-30
4. State of the Art and Current Challenges on Electroactive Biomaterials and Strategies for Neural Tissue Regeneration;Advanced Healthcare Materials;2023-11-13
5. Nanomaterial payload delivery to central nervous system glia for neural protection and repair;Frontiers in Cellular Neuroscience;2023-10-24
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3