Tungsten nitride-coated graphene fibers for high-performance wearable supercapacitors
Author:
Affiliation:
1. National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly
2. Department of Materials Science and Engineering
3. KAIST
4. Daejeon 34141
5. Republic of Korea
Abstract
Transition metal nitrides can endow graphene fibers with both high conductivity and high capacitance to achieve high-performance fiber supercapacitors.
Funder
National Research Foundation of Korea
KAIST
Publisher
Royal Society of Chemistry (RSC)
Subject
General Materials Science
Link
http://pubs.rsc.org/en/content/articlepdf/2020/NR/D0NR06636B
Reference78 articles.
1. Smart Electronic Textiles
2. Fiber‐Type Solar Cells, Nanogenerators, Batteries, and Supercapacitors for Wearable Applications
3. Interface-Confined High Crystalline Growth of Semiconducting Polymers at Graphene Fibers for High-Performance Wearable Supercapacitors
4. Dual-Doped Molybdenum Trioxide Nanowires: A Bifunctional Anode for Fiber-Shaped Asymmetric Supercapacitors and Microbial Fuel Cells
5. Amino functionalization optimizes potential distribution: A facile pathway towards high-energy carbon-based aqueous supercapacitors
Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. One-pot synthesis of tungsten oxynitride/nitrogen-doped graphene with particle-sheet hybrid nanostructure as a highly effective binder-free supercapacitor electrode;Materials Today Sustainability;2024-12
2. Emerging Capacitive Materials for On-Chip Electronics Energy Storage Technologies;Batteries;2024-09-07
3. High-Energy–Density Fiber Supercapacitors Based on Transition Metal Oxide Nanoribbon Yarns for Comprehensive Wearable Electronics;Advanced Fiber Materials;2024-07-10
4. Progress in flexible supercapacitors for wearable electronics using graphene-based organic frameworks;Journal of Energy Storage;2024-05
5. Facile synthesis of tungsten nitride/carbide quantum dots supported on amorphous carbon for supercapacitor applications;Journal of Materials Science: Materials in Electronics;2024-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3