Fabrication of arrayed triangular micro-cavities for SERS substrates using the force modulated indention process
Author:
Affiliation:
1. The State Key Laboratory of Robotics and Systems
2. Robotics Institute
3. Harbin Institute of Technology
4. Harbin 150080
5. P. R. China
6. School of Chemistry and Chemical Engineering
7. Harbin
Abstract
Based on the tip-based continuous indentation process, a novel method for the fabrication of periodic arrayed triangular micro-cavities on copper (Cu) surface is presented as SERS substrates.
Funder
National Natural Science Foundation of China
Publisher
Royal Society of Chemistry (RSC)
Subject
General Chemical Engineering,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2017/RA/C6RA28875H
Reference54 articles.
1. High performing phase-based surface plasmon resonance sensing from metallic nanohole arrays
2. Self-assembled dendrite Ag arrays with tunable morphologies for surface-enhanced Raman scattering
3. Interaction between phase transformations and dislocations at incipient plasticity of monocrystalline silicon under nanoindentation
4. Optofluidic SERS chip with plasmonic nanoprobes self-aligned along microfluidic channels
5. Heat transfer enhancement in micro-channel with multiple synthetic jets
Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Tuning the plasmonic response of periodic gold nanodisk arrays for urea sensing;Journal of Materials Science;2024-04
2. Periodic nanostructures on single-crystal copper for SERS substrate fabricated by using AFM dynamic lithography;Vacuum;2023-12
3. Femtosecond laser patterned silicon embedded with gold nanostars as a hybrid SERS substrate for pesticide detection;RSC Advances;2023
4. Effect of Zr contents and covering Ag layer on microstructure and SERS properties of Cu nanoparticles / Cu-Mo-Zr alloy films on flexible substrates;Applied Surface Science;2022-12
5. The performance of surface enhanced Raman scattering and spatial resolution with triangular plate dimer from ultra-ultraviolet to near-infrared range;Journal of Physics: Condensed Matter;2021-11-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3