Crystal phase content-dependent functionality of dual phase SnO2–WO3nanocomposite filmsviacosputtering crystal growth
Author:
Affiliation:
1. Institute of Materials Engineering
2. National Taiwan Ocean University
3. Keelung 20224
4. Taiwan
Abstract
In this study, crystalline SnO2–WO3nanocomposite thin films were grown through radio-frequency cosputtering of metallic Sn and ceramic WO3targets.
Funder
Ministry of Science and Technology, Taiwan
Publisher
Royal Society of Chemistry (RSC)
Subject
General Chemical Engineering,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2019/RA/C8RA08494G
Reference31 articles.
1. Reducing gas-sensing performance of Ce-doped SnO2 thin films through a cosputtering method
2. Powder Pre-Treatment for Aerosol Deposition of Tin Dioxide Coatings for Gas Sensors
3. Photocatalytic-degradation and reduction of organic compounds using SnO2 quantum dots (via a green route) under direct sunlight
4. Organic-free synthesis of nanostructured SnO2 thin films by chemical solution deposition
5. Physical investigations and photocatalytic activities on ZnO and SnO2 thin films deposited on flexible polymer substrate
Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A review of advanced gas sensor based on sputtering SnO2 thin film— challenges and opportunities;Journal of Environmental Chemical Engineering;2023-12
2. Enhancing the perovskite solar cell performance by the interface modification of Zn–Sn–O compound heterostructures;Materials Advances;2023
3. Cosputtered SnO 2 –ZnO composite nanofilms with improved dual function;Journal of the American Ceramic Society;2022-08-29
4. Scavenging solvent-mediated photocatalytic conversion of Co(III) to Co(II) by synergistic interaction of SnO2/ZnFe2O4 nanocomposites under ultraviolet illumination;Journal of Materials Science: Materials in Electronics;2022-08-20
5. Design of thin-film configuration of SnO2–Ag2O composites for NO2 gas-sensing applications;Nanotechnology Reviews;2022-01-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3