Predicting rare earth elements concentration in coal ashes with multi-task neural networks

Author:

Song Yu12ORCID,Zhao Yifan1,Ginella Alex1,Gallagher Benjamin3,Sant Gaurav2456,Bauchy Mathieu14ORCID

Affiliation:

1. Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab) 5731B Boelter Hall, Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, USA

2. Laboratory for the Chemistry of Construction Materials (LC2) 5731J Boelter Hall, Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, USA

3. Electric Power Research Institute (EPRI) 3420 Hillview Avenue, Palo Alto, CA 94304, USA

4. Institute for Carbon Management (ICM), University of California, Los Angeles, CA, USA

5. Department of Materials Science and Engineering, University of California, Los Angeles, CA, USA

6. California Nanosystems Institute, University of California, Los Angeles, CA, USA

Abstract

Our multi-task neural network approach simultaneously predicts the concentration of all types of rare earth elements (REEs) in coal ashes, with an improved accuracy and robustness as compared to conventional single-task neural networks.

Funder

U.S. Department of Transportation

National Science Foundation

Publisher

Royal Society of Chemistry (RSC)

Reference89 articles.

1. B. S.Van Gosen , P. L.Verplanck , R. R.Seal , K. R.Long and J.Gambogi , Rare-earth elements” (USGS Numbered Series 1802-O, U.S. Geological Survey, Reston, VA, 2017 )

2. F.Team , The role of rare earth elements in wind energy and electric mobility, EU Science Hub - European Commission ( 2020 ). https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/role-rare-earth-elements-wind-energy-and-electric-mobility

3. Evaluating Rare Earth Element Availability: A Case with Revolutionary Demand from Clean Technologies

4. J.Rajesh Kumar and J.-Y.Lee , in Recovery of Critical Rare Earth Elements for Green Energy Technologies , Rare Metal Technology, The Minerals, Metals & Materials Series , ed. H. Kim , S. Alam , N. R. Neelameggham , H. Oosterhof , T. Ouchi , X. Guan , Springer International Publishing , Cham , 2017 , pp. 19–29

5. Can a dysprosium shortage threaten green energy technologies?

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3