Enhanced photovoltaic performance of ultrathin Si solar cells via semiconductor nanocrystal sensitization: energy transfer vs. optical coupling effects
Author:
Affiliation:
1. Center for Functional Nanomaterials
2. Brookhaven National Laboratory
3. Upton, USA
4. Sustainable Energy Technologies Department
5. Department of Physics and Astronomy
6. Stony Brook University
Abstract
Efficient energy transfer from semiconductor nanocrystals, combined with optical coupling effects, enhances the efficiency of ultrathin Si solar cells by up to 45 percent.
Funder
Basic Energy Sciences
Publisher
Royal Society of Chemistry (RSC)
Subject
General Materials Science
Link
http://pubs.rsc.org/en/content/articlepdf/2016/NR/C5NR07932B
Reference32 articles.
1. Long-Range Resonance Energy Transfer in Molecular Systems
2. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems
3. Dynamics of Light Harvesting in Photosynthesis
4. Efficient Radiative and Nonradiative Energy Transfer from Proximal CdSe/ZnS Nanocrystals into Silicon Nanomembranes
5. Excitonic enhancement of nonradiative energy transfer to bulk silicon with the hybridization of cascaded quantum dots
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Two Better Compatible and Complementary Light Absorption Polymer Donors Contributing Synergistically to High Efficiency and Better Thermally Stable Ternary Organic Solar Cells;ACS Applied Energy Materials;2022-04-04
2. Optical simulation of ultimate performance enhancement in ultrathin Si solar cells by semiconductor nanocrystal energy transfer sensitization;Nanoscale Advances;2021
3. Edge-driven nanomembrane-based vertical organic transistors showing a multi-sensing capability;Nature Communications;2020-02-12
4. Fluorescence resonance energy transfer effect enhanced high performance of Si quantum Dots/CsPbBr3 inverse opal heterostructure perovskite solar cells;Journal of Power Sources;2019-11
5. Light-Induced Interfacial Phenomena in Atomically Thin 2D van der Waals Material Hybrids and Heterojunctions;ACS Energy Letters;2019-08-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3