Functional surface layers in relaxor ferroelectrics
Author:
Affiliation:
1. School of Materials Science and Engineering
2. Faculty of Science
3. University of New South Wales
4. Sydney
5. Australia
6. European Synchrotron Radiation Facility (ESRF)
7. Grenoble 38000
8. France
9. MAX IV Laboratory
10. Lund University
Abstract
We demonstrate a unique capability to control the formation and properties of skin layer structures in relaxor ferroelectrics by adjusting defect concentration. It is shown that the skin layer is polar and both electrically and optically active.
Funder
Australian Research Council
Publisher
Royal Society of Chemistry (RSC)
Subject
Materials Chemistry,General Chemistry
Link
http://pubs.rsc.org/en/content/articlepdf/2020/TC/D0TC01300E
Reference89 articles.
1. Defect‐Driven Structural Distortions at the Surface of Relaxor Ferroelectrics
2. B. Jaffe , Piezoelectric ceramics , Elsevier , 2012
3. W. Heywang , K.Lubitz and W.Wersing , Piezoelectricity: evolution and future of a technology , Springer Science & Business Media , 2008
4. Y. Xu , in Ferroelectric Materials and their Applications , ed. Y. Xu , Elsevier , Amsterdam , 1991 , pp. 1–36 10.1016/B978-0-444-88354-4.50006-1
5. Chemistry of Ferroelectric Surfaces
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Magnetic skin effect in Pb(Fe _{1/2}$ Nb _{1/2}$ )O3;Journal of Physics: Condensed Matter;2024-07-29
2. Thermal-electrical like response in doped sodium bismuth titanate-based ferroelectric ceramics;Ceramics International;2022-10
3. Improving the photostriction of BiFeO3-based ceramics by bandgap and domain size engineering;Ceramics International;2022-02
4. Optomechanical Mapping of Ferroelectric Domains and the Piezo‐Photovoltaic Effect in Ba‐ and Ni‐Doped (K 0.5 Na 0.5 )NbO 3;Advanced Photonics Research;2021-07-16
5. Evolution of mesoscopic domain structure and macroscopic properties in lead-free Bi0.5Na0.5TiO3-BaTiO3 ferroelectric ceramics;Journal of Applied Physics;2021-02-28
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3